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Effective Casimir forces induced by thermal fluctuations in the vicinity of bulk critical points are studied by
means of Monte Carlo simulations in three-dimensional systems for film geometries and within the experi-
mentally relevant Ising and XY universality classes. Several surface universality classes of the confining
surfaces are considered, some of which are relevant for recent experiments. An approach introduced previously
�O. Vasilyev et al., EPL 80, 60009 �2007��, based inter alia on an integration scheme of free-energy differ-
ences, is utilized to compute the universal scaling functions of the critical Casimir forces in the critical range
of temperatures above and below the bulk critical temperature. The resulting predictions are compared with
corresponding experimental data for wetting films of fluids and with available theoretical results.
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I. INTRODUCTION

The confinement of a fluctuating medium generates effec-
tive forces acting on the corresponding surfaces. Close to the
critical point of a continuous phase transition the relevant
fluctuating degree of freedom is the order parameter of the
phase transition. The effective force resulting from the con-
finement of such critical fluctuations is known as the critical
Casimir force fC. This force has a universal character in the
sense that it is largely independent of the microscopic details
of the systems and of the confining surfaces but depends
only on some of their gross features �which characterize the
corresponding bulk and surface universality classes�, as it is
typically the case for bulk and surface critical phenomena.
Such forces were first discussed by Fisher and de Gennes �1�
on the basis of finite-size scaling �2� for a fluid system con-
fined by two parallel walls.

After early qualitative observations �3,4� quantitative ex-
perimental evidence for such a force was provided by the
study of wetting layers of 4He �5�, where fC originates from
the confined critical fluctuations associated with the super-
fluid transition in the fluid film; fC adds to the omnipresent
background dispersion forces which together determine the
equilibrium thickness L of the wetting layers �5�. The depen-
dence of L on temperature T provides an indirect measure-
ment of fC; varying the undersaturation allows one to tune L
and thus to probe the scaling properties of fC as function of
T and L �6,7�. Later on, wetting layers of classical �8,9� and
quantum binary liquid mixtures �10� have been studied and
in two cases it has been possible to determine quantitatively
the critical Casimir force near a critical �8� and a tricritical
�10� point. Only recently, however, the existence of the criti-
cal Casimir effect has been demonstrated by a direct mea-
surement of the femto-Newton force between a planar wall
and a colloidal particle immersed in a near-critical binary
liquid mixture �11�.

The universality of the Casimir force fC allows one to
investigate its temperature dependence via representative
models. Recently we have briefly reported �12� an approach
for the Monte Carlo �MC� computation of the critical Ca-

simir force which allowed us to study the scaling behavior of
fC in the experimentally relevant cases mentioned above and
to provide results for features of fC which were theoretically
not accessible before. Specifically, as follows from finite-size
scaling theory �13,14� the temperature and the geometry de-
pendence of the critical Casimir force fC per unit area A and
in units of kBT��−1 can be expressed in terms of a universal
scaling function � the form of which depends on the shape
of the geometrical confinement, on the bulk universality
class of the confined medium, and on the surface universality
classes of the confining surfaces �15�. The latter are related
to the boundary conditions �BC� �15,14� imposed by the sur-
faces on the relevant fluctuating field, i.e., on the order pa-
rameter �OP� of the underlying second-order phase transi-
tion.

Binary liquid mixtures near their demixing points belong
to the bulk universality class of the three-dimensional �3D�
Ising model, whereas liquid 4He near the superfluid transi-
tion temperature of the critical end point of the � line be-
longs to the bulk universality class of the XY model. In the
aforementioned experiments involving thin films of classical
fluids, both confining surfaces preferentially adsorb one or
the other of the two components of the binary mixture. This
corresponds to the surface universality class of symmetry-
breaking surface fields �15�; the sign of the surface field �+ or
−� acting at the boundary of the system indicates which com-
ponent of the mixture is preferentially adsorbed. Accord-
ingly, �+−� BC reflect the fact that effectively the two sur-
faces attract different components of the liquid mixture,
whereas �++� �and, equivalently, �−−�� BC correspond to the
case in which the two surfaces effectively attract the same
component. In the case of the colloidal suspension studied in
Ref. �11� both surfaces could be treated chemically such that
�++� as well as �+−� BC have been realized. For the wetting
experiment of Ref. �8� the appropriate BC are �+−�. In the
case of wetting experiments for pure superfluid 4He �5� the
superfluid OP vanishes at both interfaces; there are no sur-
face fields which couple to the superfluid OP. This corre-
sponds to the symmetric Dirichlet-Dirichlet BC �O ,O� based
on the so-called ordinary �O� surface universality class.

PHYSICAL REVIEW E 79, 041142 �2009�

1539-3755/2009/79�4�/041142�21� ©2009 The American Physical Society041142-1

http://dx.doi.org/10.1103/PhysRevE.79.041142


Due to the complexity of technical challenges as well as
due to conceptual issues like the dimensional crossover in
three-dimensional films, theoretical studies of the scaling
functions of the critical Casimir forces by analytic means
have been either limited to mean-field calculations or have
been confined to the disordered phase or to BC without
symmetry-breaking fields. Therefore Monte Carlo simula-
tions offer a highly welcome tool to overcome these short-
comings and to study, inter alia, the aforementioned experi-
mentally relevant universality classes within the whole
temperature range.

Our computer simulations of the critical Casimir force are
based on the integration scheme of free-energy differences
via the so-called “coupling parameter approach” and we
computed the scaling functions for the 3D Ising model with
�++�, �+−�, Dirichlet-Dirichlet �O ,O�, and periodic BC
�PBC�, as well as for the 3D XY model with Dirichlet-
Dirichlet �O ,O� and periodic BC. In all cases we studied the
film geometry. The experimental data of Refs. �5,8� turn out
to be in a good agreement with our simulation results which
are, in addition, consistent with those obtained by alternative
numerical approaches based on the computation of either the
expectation value of a suitable lattice stress tensor �16� for
the 3D Ising model with periodic BC, or of the internal en-
ergy density, followed by an integration over the temperature
�17�, for the XY model with �O ,O� BC. We also find good
agreement with the results of the de Gennes–Fisher local-
functional method extended to the Ising universality with
�++� BC �18,19�.

The purpose of the present study is to elucidate the rel-
evant details of the approach used in Ref. �12� and to present
more accurate numerical results for both the Ising and the XY
bulk universality class in three dimensions. In particular, we
extensively discuss the important issue of corrections to scal-
ing and the fitting procedure necessary to obtain the esti-
mates of the scaling functions � from the raw MC data.
Several functional forms of corrections to scaling are consid-
ered and the ensuing differences in the resulting scaling
functions are described. In particular, the estimates for the
universal Casimir amplitudes at Tc are obtained.

Our presentation is organized as follows: in Sec. II we
provide the basic theoretical background, i.e., the models, the
critical Casimir force, and the scaling functions are defined.
In Sec. III we summarize our method for the computation of
the scaling functions. Data for the XY model with �O ,O� as
well as with periodic BC are presented in Sec. IV A. They
have been obtained for larger lattices and with a better accu-
racy compared to the results presented in Ref. �12�. Discus-
sions of the dependence of the corresponding scaling func-
tions on the aspect ratio of the simulation cell and of the
corrections to scaling are included. For the case of �O ,O�
BC in the XY model we present the comparison with the
experimental data for wetting films of 4He �5� and with the
MC simulation results obtained in Refs. �16,17�. Data for
periodic BC in the XY model are compared to the available
field-theoretical �FT� predictions above the bulk critical tem-
perature Tc �6,7,20,21� and to the MC simulation data of Ref.
�16�. The analysis of the 3D Ising model is reported in Sec.
IV B where we present data for the Casimir scaling function
for the �O ,O� BC, the aspect ratio dependence of the Ca-

simir scaling functions for periodic BC, the determination of
the universal Casimir amplitude via the analysis of the finite-
size corrections, and the detailed description of the fitting
procedure. In addition we compare our results for periodic
BC in the Ising model with recent field-theoretical predic-
tions for the behavior of the corresponding scaling function
above Tc �6,7,20,21� and with results in two dimensions �2D�
�22�. For �++� and �+−� BC we provide a comparison of our
data with the exact results in 2D �23� and with mean-field
predictions �24� as well as with results of the extended de
Gennes–Fisher local-functional method applied to the case of
�++� BC �18,19�. The experimental data for the scaling func-
tion obtained from the wetting experiments for a binary liq-
uid mixture in Ref. �8� are compared with our MC results for
�+−� BC. We end with a summary and conclusions in Sec. V.

II. THEORETICAL BACKGROUND

We consider the Ising and the XY model defined on a
three-dimensional simple cubic lattice via the Hamiltonian

H = − J�
�i,j�

si · s j , �1�

where J�0 is the spin-spin coupling constant; the sum �i , j�
runs over all nearest-neighbor pairs of sites i and j on
the lattice. In the Ising model, si has only one component
si� 	+1,−1
, whereas in the XY model si is a two-component
vector with modulus �si�=1. Temperatures and energies are
measured in units of J. The inverse critical temperature is
�c=0.221 654 4�3� �25� for the Ising model, whereas �c
=0.454 20�2� �26� for the XY model. We consider film ge-
ometries, i.e., lattice cells of sizes Lx�Ly�Lz with Lx=Ly
�Lz�L and A=Lx�Ly, with periodic BC in the x and y
directions �in which the system has linear extensions Lx and
Ly�. In the z direction we consider �O ,O� and periodic BC
for the XY model and fixed, �O ,O�, and periodic BC for the
Ising model. The �++� and �+−� BC are realized by fixing the
boundary spins to values si= +1 �+� or si=−1 �−� whereas
�O ,O� BC are realized by free surface spins.

In a film geometry with thickness L and large transverse
area A, the Casimir force fC per unit area A and in units of
kBT��−1 is defined as

fC��,L� � − � fex/�L , �2�

where fex�� ,L���L�f − fbulk���� is the excess free energy
which depends on the type of the BC, f is the free energy of
the film per volume V=LA, and fbulk is the bulk free-energy
density. From the general theory of finite-size scaling �2� and
based on renormalization-group analyses �6,7� we expect the
Casimir force to take the universal scaling form

fC��,L� = L−d�„��L/	0
+
�1/


… , �3�

where the scaling function ��x� depends on the spatial di-
mension d and on the BC. Here �= ��c−�� /�= �T−Tc� /Tc is
the reduced temperature and 	=	0

����−
 is the bulk correlation
length which controls the spatial exponential decay of the
two-point correlation function. In the XY model the bulk
correlation length 	���0� is infinite due to Goldstone modes
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and therefore 	0
−

is not defined. In order to avoid this com-
plication we express the scaling variable x in terms of 	0

+

only. The critical exponent 
 equals 0.6301�4� and 0.662�7�
for the Ising and the XY bulk universality class in three di-
mensions, respectively �27�; 	0

� are nonuniversal amplitudes

above �+� and below �−� Tc with 	0
+
=0.501�2� �25� for the

Ising model on the simple cubic lattice, whereas 	0
+

=0.498�2� �26� for the XY model. The values of 	0
+

quoted
here refer to the amplitude of the second moment correlation
length 	2nd; however, 	 /	2nd�1 for ���c for both the Ising
and the XY model �26,27�.

At T=Tc the scaling function reduces to the universal Ca-
simir amplitude ��0���d−1�, which has been extensively
studied in the literature �see, e.g., Refs. �6,7,13,14,18,20��.
Determining the whole temperature dependence of the scal-
ing function and its dependence on the spatial dimension d is
a much more challenging task.

For the Ising universality class with �O ,O�, �++�, and
�+−� BC in the film geometry theoretical results are available
in d=2 from the exact diagonalization of the transfer matrix
�23� and in d�4 from mean-field theory �MFT� �24�. In d
=3 theoretical results are available for T�Tc and periodic
BC investigated both by MC simulations �at Tc� �16� and by
field-theoretical methods �6,7,20,21� as well as for Dirichlet
�6,7�, von Neumann BC �6,7�, and Robin BC �28� investi-
gated by field-theoretical methods. Recently, the extended de
Gennes–Fisher local-functional method has been applied in
order to study the case of �++� BC within the full tempera-
ture range �18,19�.

For the bulk universality class of the XY model in film
geometry with �O ,O� BC theoretical results for the Casimir
force scaling function are available in d=3. They include
field-theoretical calculations for temperatures T�Tc �6,7�
and numerical results from MC simulations �12,17�. In the
low-temperature limit the specific features of the superfluid
4He were taken into account in Ref. �29� and the contribution
to the Casimir force resulting from the capillary-wave-like
fluctuations on the surface of 4He wetting films was deter-
mined. For T�Tc, which corresponds to temperatures below
the superfluid-normal fluid transition temperature T� of the �
transition, certain qualitative features of the Casimir scaling
function have been recently understood within the frame-
work of the Landau-Ginzburg mean-field theory �30,31�.

For large areas A, the total free energy F�� ,L ,A� of the
confined system can be written as

F��,L,A� � ALf = A�Lfbulk��� + �−1fex��,L�� . �4�

The quantity fex contains two L-independent surface contri-
butions in addition to the finite-size contribution fex�� ,L�
− fex�� ,�� the L dependence of which gives rise to the ef-

fective Casimir force. On a lattice �ˆ�, the derivative in Eq.
�2� is replaced by a finite difference and fC�� ,L� is given by

f̂C�,L −
1

2
,A� � −

�F��,L,A�
A

+ �fbulk��� , �5�

where F�� ,L ,A�=F�� ,L ,A�−F�� ,L−1,A�. One can con-
sider different definitions of the lattice derivative than the

one we have implemented in Eq. �5�. Different choices give
rise to different corrections to the leading behavior of the
Casimir force scaling function.

III. METHOD

A. Computation of free-energy differences

Monte Carlo methods are generally not efficient for the
computation of quantities, such as the free energy F, which
cannot be expressed as ensemble averages. Nevertheless,
free-energy differences, such as F�� ,L ,A� we are inter-
ested in, can be cast in such a form via the so-called “cou-
pling parameter approach” �see, e.g., Ref. �32��. This is a
viable alternative to the method used in Ref. �16� in which a
suitable lattice stress tensor has been defined in such a way
that its ensemble average renders F. So far, however, this
latter method is only applicable for periodic BC.

If one is interested in the Monte Carlo computation of
the difference F1−F0 between the free energies Fi=
− 1
� ln�Cexp�−�Hi� �i� 	0,1
� of two lattice models M0 and

M1 with the same configuration space C but different Hamil-
tonians H0 and H1, respectively, it is convenient to introduce
an “interpolating” system Mcr��� with the crossover Hamil-
tonian

Hcr��� = �1 − ��H0 + �H1, �6�

where �� �0,1�, and again the same configuration space C.
As a function of the coupling parameter �, Hcr��� interpo-
lates between H0 and H1 as � increases from 0 to 1 and
accordingly the free energy Fcr���=− 1

� ln�Cexp�−�Hcr���� of
Mcr��� interpolates between F0 and F1. The difference F1
−F0 can be trivially expressed as F1−F0=�0

1d�Fcr� ��� where
Fcr� is the derivative of Fcr��� with respect to the coupling
parameter:

dFcr���
d�

=
�C �H1 − H0�e−�Hcr���

�C e−�Hcr���
= �H�Mcr���, �7�

which takes the form of the canonical ensemble average
�. . .�Mcr��� of H�H1−H0 and therefore it can be efficiently
computed via MC simulations of the lattice model Mcr���.
As a result one can conveniently express the difference in
free energies as an integral over canonical averages �see,
e.g., Ref. �32��:

F1 − F0 = �
0

1

d��H�Mcr���. �8�

According to Eq. �5�, the Casimir force we are interested
in is related to the difference F�� ,L ,A� between the free
energies F�� ,L ,A� and F�� ,L−1,A� of the same model on
two lattices with different numbers of sites and therefore
different configuration spaces. In order to apply the method
described above for the computation of F�� ,L ,A� one
identifies the model M0, its Hamiltonian, and the associated
configuration space C with the corresponding ones of the
model we are interested in on the lattice A�L, as depicted in
Fig. 1�a�, so that F0�� ,L ,A�=F�� ,L ,A�. The final system
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M1 has to be chosen such that it has the same configuration
space C as M0. This is achieved by adding to the model on
the lattice A� �L−1�—for which we want to compute the
free energy F�� ,L−1,A�—a two-dimensional lattice of size
A with suitable degrees of freedom and lateral periodic BC
�see Fig. 1�b��. The Hamiltonian H1 of M1 is defined such
that the added layer does not interact with the remaining part
of the system and therefore F1�� ,L ,A�=F�� ,L−1,A�
+F2D�� ,A�, where F2D�� ,A� is the free energy of the iso-
lated two-dimensional layer. This layer can be thought of as
the one at position k0� 	1,2 , . . . ,L
 �along the z direction� in
the model M0 which then decouples from the rest of the
lattice upon passing from �=0 to �=1, i.e., from Fig. 1�a� to
Fig. 1�b�. The resulting crossover Hamiltonian Hcr��� �see
Eq. �6�� additionally depends on the original position k0 of
the extracted layer. In particular, in the three-dimensional
models we are mainly interested in, the fluctuating degrees
of freedom are one-�Ising� or two-component �XY� vectors
sx,y,z—where i= �x ,y ,z� specifies the lattice site—which in-
teract only with their nearest neighbors on the same lattice,
with a coupling strength J=1 �indicated by solid bonds in
Figs. 1�a� and 1�b�; J is absorbed into ��. For them one
explicitly finds

H � H1 − H0 = − �
x,y

�sx,y,k0−1 · sx,y,k0+1 − sx,y,k0−1 · sx,y,k0

− sx,y,k0
· sx,y,k0+1� . �9�

The resulting Hcr���=H0+�H is characterized by the cou-
pling constants depicted in Fig. 1�c�. The free-energy differ-
ence F �see Eqs. �5� and �8�� can be finally expressed as

F��,L,A� = − I��,L,A� + F2D��,A� , �10�

where I�� ,L ,A�=�0
1d��H�Mcr���. Note that Hcr��� �see Fig.

1�c��, H �see Eq. �9��, and therefore �H�Hcr��� depend on
the value of k0 whereas I�� ,L ,A� is actually independent of
it, as long as the boundary conditions are not affected by the
extraction of the k0th layer as � varies between 0 and 1. For
fixed and open BC in the z direction this requires k0�1,
whereas for PBC there is no such restriction on k0 and
�H�Hcr��� is actually independent of it. In our simulations we
have chosen k0=L /2.

Once F�� ,L ,A� has been computed, one has still to sub-
tract fbulk��� from it �see Eq. �5��, in order to determine the
Casimir force in a film of assigned thickness L−1 /2. How-
ever, the accurate computation of the bulk free-energy den-
sity fbulk��� is a numerical problem by itself and extracting it
from finite-size data requires a very accurate analysis. In
order to avoid this complication in the computation of the
Casimir force, it is convenient to consider the difference be-
tween the forces acting in slabs of thicknesses L1 and L2
�L1:

 f̂C��,L1,L2,A� � f̂C�,L1 −
1

2
,A� − f̂C�,L2 −

1

2
,A�

=
�

A
�I��,L1,A� − I��,L2,A�� �11�

in which the contributions of both fbulk��� and F2D�� ,A�
actually cancel. Accordingly, the procedure to calculate the
scaling function of the Casimir force consists of the follow-
ing steps: �1� For a given slab L�A and temperature �−1, via
MC simulations we compute the ensemble averages
�H�Hcr��� for different values of �� 	�1 , . . .�N
. �2� On the
basis of these N values we calculate the integral I�� ,L ,A� in
Eq. �8� via numerical integration. �3� These computations are
repeated for different sizes L, A, and temperatures �−1, yield-

ing numerical estimates for  f̂C�� ,L1 ,L2 ,A� �see Eq. �11��.
�4� The scaling function � in Eq. �3� is retrieved from the

numerical data for  f̂C as described below. The results pre-
sented in Sec. IV have been obtained by using the Simpson
integration method with N=20 mentioned above in step �2�
and by using pairs of slabs �L1 ,L2�= �L ,2L� with L
=13,16,20 for the Ising model and L=10,15,20 for the XY
model, as introduced in step �4� and for fixed aspect ratios
��L /�A. �The motivation for our choice L2=2L will be
provided in the following subsection.� The Simpson integra-
tion method with N=20 applied to the calculation of
I�� ,L ,A� in Eq. �8� for the widest slabs L=20 yields a maxi-
mal numerical inaccuracy which is at least ten times smaller
than the statistical inaccuracy of our MC simulation.

The method of Ref. �17� takes advantage of the possibly
available numerical knowledge of the bulk energy density
ubulk of the model of interest whereas here the analogous
information on the bulk free energy fbulk is not required for
the determination of the Casimir scaling function, making
our approach applicable also to cases in which there is no
detailed knowledge of ubulk and fbulk.

B. Determination of the scaling function

The scaling function � of the Casimir force can be ex-
tracted from the temperature dependence of

 f̂C�� ,L1 ,L2 ,A�, for fixed L1,2 and A, by using the fact that

f̂C in Eq. �11� scales according to Eq. �3� for large L1,2 and A.
In order to highlight these scaling properties it is convenient
to introduce the quantity

+

H Ha) b) c) Hcr0 1

y

x

z

λ = 0 λ = 1
βJ = 1
βJ = 1 − λ
βJ = λ

k0 + 1
k0

k0 − 1

FIG. 1. �Color online� Bond arrangement for the computation of
the free-energy difference in Eq. �8� �see main text�. The crossover
Hamiltonian Hcr �c� belongs to a system which interpolates between
those described by the Hamiltonians �a� H0 and �b� H1.
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g�y ;L1,L2,A� � �L1 − 1/2�d f̂C„� = ��y ;L1�,L1,L2,A… ,

�12�

as a function of y, where ��y ;L1���c / (1+y�L1−1 /2�−1/
).
According to Eq. �3� and with �= ��c−�� /�, g is expected to
scale as

g�y ;L1,L2,A� = �̂�y� − �−d�̂��1/
y� , �13�

where �= �L2−1 /2� / �L1−1 /2� is the width ratio, and �̂�y� is

the Monte Carlo estimate of ��y����y / �	0
+
�1/
�; here d=3.

Note that, even though � is independent of this geometrical

realization of the simulation cell, �̂ might depend on it via A
and L1,2 due to corrections to scaling. For a given pair of
slabs L1�A and L2�A, the available Monte Carlo data for

 f̂C�� ,L1 ,L2 ,A� at different temperatures allow one to de-
termine g�y ;L1 ,L2 ,A� for a discrete set of values of y. In

order to determine �̂�y� from the numerical data for
g�y ;L1 ,L2 ,A� with fixed L1,2 and A, one can solve Eq. �13�
iteratively. One can expect �see below� that this yields a so-
lution for L2�L1, i.e., ��1 together with the property

�̂��y�→��→0 which holds apart from T�Tc in the XY

model. In fact, in the latter case, �̂�y� and therefore
g�y ;L1 ,L2 ,A� attain nonzero limiting values for y→−�. In
order to estimate g�y→−� ;L ,2L ,A�, which is necessary for

the iterative determination of �̂, we calculate the average of
the data points of g�y ;L ,2L ,A� corresponding to the three
smallest available values of y. This average is used as the
value of g�y ;L1 ,L2 ,A� below the range of y explored by our
simulations.

As a first approximation of the actual �̂�y� one takes

�̂0�y��g�y ;L1 ,L2 ,A�, which can be improved by taking into

account that Eq. �13� yields �̂�y�= �̂0�y�+�−d�̂��1/
y�
� �̂0�y�+�−d�̂0��1/
y�. Accordingly, a better approximant

�̂1�y� is provided by

�̂1�y� = �̂0�y� + �−d�̂0��1/
y� . �14�

The values of �̂0 at the point �1/
y, for which no MC data
might be available, are obtained by cubic spline interpolation

of the available ones. In Eq. �14� one can replace �̂0 by

using Eq. �13�, yielding �̂1�y�= �̂�y�−�−2d�̂��2/
y�� �̂�y�
−�−2d�̂1��2/
y�, which indicates how the approximant �̂1�y�
can be improved by introducing �̂2�y�= �̂1�y�
+�−2d�̂1��2/
y�= �̂�y�−�−4d�̂��4/
y�. This expression can in
turn be used to further improve the approximant along the
same lines. The resulting iterative procedure yields a se-
quence of approximants

�̂k�1�y� = �̂k−1�y� + �−2k−1d�̂k−1��2k−1/
y� , �15�

which converges very rapidly because the correction to the
kth approximant is of the order of �−2k−1d, i.e., exponentially

small in 2k and, in addition, �̂�y� is generally expected to
decay exponentially for large �y�, or to approach a constant as
in the case of the XY model for y→−�. With ��2, already

for k=5 one has �−2k−1d�3.5�10−15 in three dimensions
�d=3�. The choice of ��L2 /L1 is a compromise between
two competing aims: a small value reduces the sizes of the

lattices required for the computation of f̂C but on the other
hand it decreases the accuracy of a given approximant in

determining �̂. With our choice of thicknesses �L1 ,L2�
= �L ,2L�, one has ��2 and a very good approximation of

�̂�y�� �̂k→��y� is already provided by �̂5�y�.

C. Details of the MC simulations and test of the method

In order to compute the canonical average �H�Mcr��� we
use a hybrid MC method which is a suitable mixture of Wolff
and Metropolis algorithms �33�. Specifically, for the Ising
model each hybrid MC step consists of four flips of a Wolff
cluster according to the Wolff algorithm, typically followed
by 3A attempts to flip a spin sx,y,z with z� 	k0−1 ,k0 ,k0+1
,
which are accepted according to the Metropolis rate �33�. An
analogous method, with a suitable implementation of Me-
tropolis and Wolff algorithms, has been used for the XY
model �26�, i.e., a flip of a Wolff cluster according to the
Wolff algorithm is typically followed by the implementation
of moves according to the Metropolis algorithm �33�.

In order to test the program we have computed numeri-
cally g�y ;5 ,10,9� as a function of y for the Ising model on a
lattice 3�3�L with periodic, �++�, and �+−� BC, finding
perfect agreement with the result of the analytic calculation
based on the transfer-matrix method.

D. Corrections to scaling

Finite-size scaling is known to be valid asymptotically for
large lattices and small values of �, i.e., a large correlation
length 	 �2�. Away from the asymptotic regime corrections to
the leading �universal� scaling behavior become relevant.
These nonuniversal corrections affect both the scaling vari-
ables and the scaling functions and depend on the details of
the model as well as on the geometry and the boundary con-
ditions �34,35�. Renormalization-group analyses reveal that
there is a whole variety of sources of corrections which arise
from bulk, surface, and finite-size effects �2�.

For the limited thicknesses L of the lattices we investi-
gated with our MC simulations it is necessary to take correc-
tions to scaling into account in order to obtain data collapse
�12,17�. In the present case, the finite-size scaling variable

��L /	0
+
�1/
 �in the following associated with the reduced tem-

perature �� is expected to acquire a leading correction of the
form

x � � �L/	0
+
�1/
�1 + g�L−�� , �16�

where � is the leading correction-to-scaling exponent in the
bulk which takes the values 0.84�4� and 0.79�2� �27� for the
three-dimensional Ising and XY universality class, respec-
tively. Corrections to the scaling behavior of the critical Ca-

simir force f̂C are expected to be of the form
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f̂C��,L,A� = L−d�̂�x,L−��� � L−d��x��1 + L−����x� + ¯� ,

�17�

for L�1, where the exponent �� controls the leading correc-
tions to the scaling behavior of the lattice estimate f̂C. Its
value is determined by that irrelevant surface or bulk pertur-
bation of the Hamiltonian H which has the smallest scaling
dimension and which also affects f̂C. In the generic bulk case
one has ��=�. But its value can be suitably increased �so
that the influence of the corrections is reduced� by using
improved Hamiltonians and observables, which can also
serve as representatives of the same universality class. This
is described in detail in Ref. �27�. In the presence of surfaces,
irrelevant surface perturbations might yield ����, but we
are not aware of either theoretical or numerical studies of this
issue. In addition, for small lattice sizes, next-to-leading cor-
rections to scaling might also be of relevance. If ���1 /2,
these corrections are generically provided by analytic terms
�L−1 �even though they might be absent in some quantities�.
The interplay between the leading and next-to-leading cor-
rections �especially if they are sizable� might result in an
effective exponent �eff. The current accuracy of our Monte
Carlo data and the relatively small range of sizes L investi-
gated here do not allow a reliable determination of �� and
��x�. In particular it will turn out that the corrections to
scaling are quite well captured by assuming ��x��g2, i.e., a
constant within the range of the scaling variable we have
investigated, and an effective exponent �eff for the size de-
pendence.

In the discussion of the expected scaling behavior of f̂C
we have assumed that the aspect ratio ��L /�A is small
enough �i.e., ��1� so that the scaling behavior in Eq. �3�
holds, which formally corresponds to the limit A→�. On the
other hand, the actual Monte Carlo simulations have been
performed on lattices with small but nonzero � and therefore
possible additional, �-dependent corrections have to be taken
into account in order to be able to extrapolate our results to
the limit �→0. The numerical results in Ref. �36� on the
�universal� � dependence of the Casimir amplitude ��0,��
�see Eq. �3�� of the three-dimensional XY model with peri-
odic and free boundary conditions suggest ��0,0�
���0,���1+r�2� for ��0.5, where r is a constant. �This is
confirmed also by the analysis in Ref. �17�.� In what follows
we assume that this dependence on � carries over to the
whole scaling function so that ��x ,0����x ,���1+�2�x��2�.
Although the amplitude �2�x� of the correction might depend
on the scaling variable x �and possibly on L−���, we shall
assume that �2�x��r2, i.e., a constant at least within the
range of values of the scaling variable x which is studied in
the present analysis. On the same footing, we expect a qua-
dratic � dependence of the finite-size scaling variable x���
�x�0��1+r1�

2� associated with the reduced temperature �,
where r1 is a constant and x�0� is given by Eq. �16�. Taking
into account all these corrections, we identify

x = �  L

	0
+�1/


�1 + g�L−���1 + r1�
2� , �18�

as the finite-size scaling variable, in terms of which the ex-

pected scaling behavior of f̂C is given by

f̂C��,L,A� = L−d�1 + g2L−�eff��1 + r2�
2�−1��x� . �19�

We shall aim at fixing the nonuniversal constants r1,2, g�,
and g2, which generally depend on the boundary conditions,
in such a way that the data collapse of the available Monte
Carlo data is optimal.

In most of the cases considered below, the accuracy of the
data and the range of sizes L investigated do not allow for
the reliable determination of both the amplitude g2 and the
exponent �eff of the correction. Therefore we fix �eff=1
���, which actually leads to a reasonably good data col-
lapse within the considered range of the scaling variable.

In the absence of corresponding dedicated theoretical and
numerical analyses, there is no a priori reason why one
should prefer the use of a specific form of corrections to
scaling, because all of them amount to an effective way of
accounting for these corrections. Accordingly, adopting a
pragmatic approach, we shall choose that form which leads
to the best data collapse or to the best fit. Specifically, we use
the following functional forms of corrections to scaling:

case �i�:

f̂C��,L,A� = L−d�1 + g1L−1�−1�1 + r2�
2�−1�̂�x� , �20�

case �ii�:

f̂C��,L,A� = L−d�1 + g2L−1��1 + r2�
2�−1�̂�x� , �21�

case �iii�:

f̂C��,L,A� = L−d�1 + g3L−�eff��̂�x� , �22�

and
case �iv�:

f̂C��,L,A� = L−d �1 + g̃1L−1�
�1 + g̃2L−1�

�1 + r2�
2�−1�̂�x� . �23�

Cases �i�, �ii�, and �iv� become all equivalent for large lattice
sizes L. On the other hand, for smaller lattice sizes, they lead
to different estimates. The coefficients g1 ,g2 ,g3 and g̃1 , g̃2
are determined in such a way as to optimize the data collapse
in the resulting estimate for ��x� �see below�. The factor of
the form �iv�, with two fitting parameters, will be considered
only if data corresponding to several different values of L are
available, so that the resulting estimates for g̃1 and g̃2 are
reliable. Case �iii� of corrections to scaling works well for
the XY and the Ising model with periodic BC. In cases in
which corrections to scaling are not small, the ansatz used
for their dependence on L might lead to a biased estimate of
the scaling function ��x�.

In order to highlight and assess the relevance of the dif-
ferent kinds of corrections, we present in the following sec-
tions also the MC data for the function g�y ;L ,2L ,A� which
is the primary quantity determined by our MC simulation

and from which the scaling function �̂�x� is eventually ob-
tained according to the procedure described in Sec. III B. In
the absence of corrections to scaling, data for g �see Eq. �12��
with L2=2L1, L1=L, as a function of y= ��c /�−1��L
−1 /2�1/
=� �L−1 /2�1/
 with fixed �=L /�A but different
sizes L should collapse on a single master curve, which,
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however, is not always the case �see, cf., Fig. 2�a��. In order
to account for the corrections to scaling we proceed as fol-
lows. First, for fixed values of L and A= �L /��2 we determine
the Monte Carlo data for g �see Eq. �12�� for different values
of the inverse temperature �. Second, from the plot of g as a
function of the rescaled reduced temperature y=� �L
−1 /2�1/
, i.e., from g�y ;L ,2L ,A�, we determine the estimate

of the scaling function �̂�y�, according to the procedure de-
scribed in Sec. III B. This procedure is repeated for the dif-
ferent slabs considered in each case. Because of corrections
to scaling and corrections due to ��0, the resulting esti-

mates �̂�y� actually depend on the specific values of L and

A= �L /��2, i.e., �̂= �̂�y ;L ,��. In order to extract the
asymptotic limit � of the scaling function of the Casimir

force from the lattice estimate �̂, we account for corrections
in accordance with Eqs. �18� and �19� �with possibly differ-
ent forms for the L-dependent corrections, see Eqs.

�20�–�23��, which involve several fitting parameters. In those
cases in which we apply corrections to scaling due to the
aspect ratio dependence of the function g�y ;L ,2L ,A� �which
turns out to be the case only for the XY model�, the actual
fitting procedure we shall use is divided into two steps.

In the first step we fix the value of L �L=10 for the XY
model� and consider data corresponding to different aspect
ratios � ��−1=4,5 ,6 ,8 ,10 for XY�. The parameters r1 and
r2 are therefore determined such that the data for

�1+r2�
2�−1�̂�y ;L ,�� ����x� for fixed L� as a function of

y�1+r1�
2� ��x, see Eq. �16�, for fixed L� yield the best data

collapse onto a single curve which ideally corresponds to the
scaling function in the limit A→�, but which is still affected
by L-dependent corrections to scaling. �This procedure actu-
ally assumes that, according to Eqs. �18� and �19�, r1 and r2
do not depend on L.�

In the second step we fix the value of � ��=1 /6 for both
XY and Ising� and we determine g� and g2 �or g1 or both g̃1
and g̃2, depending on the specific form assumed for the
corrections� in such a way that the data for

�1+g2L−�eff��̂�y ;L ,�� ����x� for fixed �� as a function of
y�1+g�L−�� ��x, see Eq. �16�, for fixed �� yield the best data
collapse onto a single curve. �This procedure actually as-
sumes that, according to Eqs. �18� and �19�, in a first ap-
proximation corrections to scaling do not depend on �.� The
details of the fitting procedure are described in the Appendix.
Our final numerical estimate of the scaling function ��x� of
the Casimir force is then provided by the curve which results

from plotting �1+g2L−�eff��1+r2�
2�−1�̂�y ;L ,�� �or equivalent

forms as given by cases �i�–�iv�� as a function of y�1
+g�L−���1+r1�

2� / �	0
+
�1/
�x, where the fitting parameters

have been fixed according to the procedure described above.
Finally it is worthwhile to keep in mind that besides the

common corrections to the leading critical behavior in ex-
perimental data, the available experimental results for critical
Casimir forces contain an additional source of corrections in
that the thickness L of the �wetting� films is definition depen-
dent up to a microscopic length �0 �37�. Accordingly, only
the leading term is universal whereas the correction ��0 /L is
even definition dependent. Moreover, also the relation be-
tween the experimental values Lexp and the theoretical values
Ltheo suffers from the same kind of uncertainty.

IV. RESULTS

In this section we summarize the numerical results for the
scaling function of the critical Casimir force within the three-
dimensional XY �Sec. IV A� and Ising �Sec. IV B� universal-
ity classes with different boundary conditions. As mentioned
in Sec. I, the former are relevant for the interpretation of the
experiments with wetting films of 4He �5�, whereas the latter
apply to the case of classical binary mixtures �8,11�. In most
of the presented plots the size of the symbols are of the order
of the statistical error. In these cases the corresponding error
bars are not shown in the figures.

A. XY model

For the simulations of the XY model we have considered
films of thicknesses L=10, 15, and 20, and transverse
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FIG. 2. �Color online� Monte Carlo data for g(y=��L
− 1

2 �1/
 ; L ,2L ,A= �L /��2) �see Eq. �12�, �= �T−Tc� /Tc� in the
three-dimensional XY model for L=10, 15, 20, and fixed inverse
aspect ratio �−1=6. In �a� and �b� we present the result for �O ,O�
and periodic BC, respectively. For T�Tc, i.e., y=y+�0 one has

y+= ��L− 1
2 �	0

+
/	+�1/
. For the XY model 	−=� for all temperatures

T�Tc. The Kosterlitz-Thouless transition of the two-dimensional
film occurs at y=yc,OO=−2.69�3� �41� and y=yc,P=−0.996�1� �42�
in �a� and �b�, respectively.
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areas A=Lx�Ly =6L�6L corresponding to an aspect ratio
�=L /�A=1 /6. At the boundaries in the x and y directions
we impose periodic BC, whereas in the z direction we con-
sider either free surface spins, corresponding to the �O ,O�
universality class, or periodic BC.

In Fig. 2 we report the data corresponding to
g�y ;L ,2L ,A� �see Eq. �12�� for �a� �O ,O� and �b� periodic
BC. Corrections to scaling, which are signaled by the fact
that data corresponding to different L do not fall onto the
same master curve, are much more pronounced for the case
of �O ,O� BC �see Fig. 2�a�� as compared with the case of
periodic BC �see Fig. 2�b��. The same holds for the depen-
dence of the data on the aspect ratio � �data for �O ,O� are
not shown; data for periodic BC are presented in Fig. 3�. For
�O ,O� and periodic BC corrections to scaling are more rel-
evant for y�ymin, where ymin is the value of y at which the
function g�y ;L ,2L ,A� attains its minimum. For y�ymin the
data obtained for different L follow a common curve. We
note that the bulk correlation length 	 of the XY model is
infinite for all temperatures below Tc: 	�T�Tc�=�. Accord-
ingly, within the XY model the scaling variable y can be

expressed as y= ��L−1 /2�	0
+
/	�1/
 only for T�Tc.

Interestingly, for both types of BC the aspect ratio depen-
dence is particularly strong in the range of temperatures
around the minimum of the function g�y ;L ,2L ,A�, i.e., −2
�y�−1 and −1�y�0 for �O ,O� and periodic BC, respec-
tively �see Fig. 3�. According to Fig. 2, the minimum of
g�y ;L ,2L ,A� for periodic BC occurs at the reduced tempera-
ture �min=−ymin / �L− 1

2 �1/
�−0.31 / �L− 1
2 �1/
. For �O ,O� BC

it occurs slightly further away from Tc, i.e., at ymin�−1.34
and −1.50�3�, depending on the value of L. We find that
changing L at a fixed aspect ratio results in slight relative
shifts of the data whereas changing � at fixed L leads to
much more pronounced differences �see Fig. 3�. This behav-
ior is expected to be related to the finite-size effects near the

thin film critical point. Within the Ising model, for an infi-
nitely large transverse area A the point at which the film with
�O ,O� or periodic BC exhibits the 2D critical behavior is
located on the bulk coexistence line H=0 at a size-dependent
temperature Tc�L��Tc such that 	(T=Tc�L�)�L. Accord-
ingly, upon increasing L, Tc�L� approaches the three-
dimensional bulk value Tc as Tc�L→��=Tc�1+ycL

−1/
� �2�,
where yc is negative, nonuniversal, and depends, inter alia,
on the type of BC. The corresponding scaling variable x�L�
���Tc�L�−Tc� /Tc��L /	0

+
�1/
 tends to a universal and BC-

dependent value x��x�L→��=yc�	0
+
�−1/
. Hence, yc is ex-

pected to lie in the vicinity of the minimum of the function
g�y ;L ,2L ,A�. Accordingly, around its minimum the function
g�y ;L ,2L ,A� should exhibit a strong dependence on the as-
pect ratio � if the bulk correlation length 	2D, associated with
the shifted critical point of the two-dimensional film �23�,
becomes comparable with the characteristic transverse length
L� ��A of the simulated system.

Within the XY model the critical point of the thin film
belongs to the Kosterlitz-Thouless �KT� universality class
�38�. The KT theory predicts that upon approaching this criti-
cal point from the high-temperature phase the correlation
length 	KT�exp��1−� /�c

KT�−
KT
�, 
KT=1 /2, diverges expo-

nentially. The shift of Tc�L� relative to the bulk critical point
is expected to scale with the film thickness L in the same
way as for the Ising model, i.e., �Tc�L�−Tc� /Tc�ycL

−1/
 for
large L, with 
=0.662�7� for the 3D XY model. This predic-
tion is in agreement with MC simulations of various models
belonging to the XY universality class and confined in films
with free �39–41� or periodic �42� BC. The critical exponent

 obtained from early simulations �39,40� of films with free
BC was slightly larger �
�0.7 �39,40�� than the theoretically
predicted value 
=0.662�7�, due to rather strong corrections
to scaling which need to be taken into account in order to
observe the theoretically expected behavior �41�. The results

of Ref. �41� for xOO
�

=−7.64�15� yield the estimate yc,OO=

−�	0
+
�1/
xOO

�
=−2.69�3� for the location of the shifted KT tran-

sition in the XY model with free boundary conditions,
whereas yc,P=−0.996�1� for PBC �42�. It turns out that in the
simulations with free BC �39� the positions of the maxima of
the thermodynamic functions such as the peak of the specific
heat or the peak of the susceptibility do not coincide with the
transition point but occur at ca. 1.3�Tc�L�. �These quantities
are not related to singularities of XY films.� With increasing
film thickness L the absolute distance in temperature of these
peaks from Tc�L� decreases and for L=10 the simulations of
Ref. �39� report a shift of less than 10%. There is also ex-
perimental evidence that as a function of temperature the
position of the minimum of the Casimir force of 4He films,
which belong to the universality class of XY films, coincides
with the position Tm�L� of their specific-heat maximum �see
Sec. VD and Figs. 21 and 32 in Ref. �43��, whereas the onset
of superfluidity in these films occurs at Tc�L��Tm�L� �see
Sec. VD and Figs. 24, 32, and 33 in Ref. �43��. A similar
behavior may be expected to hold for the function
g�y ;L ,2L ,A�. Indeed, as can be seen from Figs. 2 and 3, the
minima of the function g�y ;L ,2L ,A� lie in the vicinity of the
corresponding values of yc. Therefore, similar to the Ising
model, the strong aspect ratio dependence around the mini-

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
y

g P
(y

;L
,2

L
,A

)

L = 10, 1/ρ = 4

L = 10, 1/ρ = 6

L = 10, 1/ρ = 10

L = 10, 1/ρ = 14

XY
periodic BC

FIG. 3. �Color online� Monte Carlo data for g(y=��L
− 1

2 �1/
 ; L ,2L ,A= �L /��2) �see Eq. �12�, �= �T−Tc� /Tc� within the
three-dimensional XY model with periodic BC for L=10 and differ-
ent values of the inverse aspect ratio �−1. For y�0 one has y=y+

= ��L− 1
2 �	0

+
/	+�1/
. For the XY model 	−=� for all temperatures T

�Tc. The Kosterlitz-Thouless transition of the two-dimensional
film occurs at y=yc,P=−0.996�1� �42�. Note the enlarged scales as
compared with Fig. 2�b�.
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mum might occur when the exponentially diverging bulk
correlation length 	2D, associated with the KT critical point
of the film, becomes comparable with the characteristic
transverse length L� ��A of the simulated system.

1. Dirichlet-Dirichlet boundary conditions

We consider first the case of �O ,O� BC. As evidenced by
Fig. 2�a�, in order to achieve a good data collapse of the
curves corresponding to different lattice sizes we have to
account for corrections to scaling according to Eqs. �18� and
�19�. As a phenomenological ansatz for the effective correc-
tions we take �eff=1 and consider two functional forms for
the L-dependent corrections to the scaling function: case �i�
�Eq. �20�� and case �ii� �Eq. �21�� as discussed in Sec. III D.
As a result of the fitting procedure, in the interval x� �−6,
−2.1� �see Eq. �18�� we find r1=1.18�10�, r2=2.40�13�, g1
=5.83�25�, and g�=2.25�15� in case �i� and g2=−2.98�8� in
case �ii� with the same values for r1, r2, and g� as in case �i�.
Figure 4 shows the corresponding resulting estimates of the
scaling function ��x� of the critical Casimir force. The qual-

ity of the data collapse for the two cases separately clearly
indicates that Eqs. �20�, �21�, and �18� are very effective
ways of accounting for the corrections to scaling in this sys-
tem. We find that ��x� is slightly affected by the choice of
the functional form of corrections to scaling and indeed in
the two cases one finds estimates of ��x� which have the
same shape but the overall amplitude is reduced by a factor
R�0.9 in case �ii� as compared with case �i�. The dashed
line represents the scaling function which has been deter-
mined in Ref. �17� on the basis of a different numerical
method and assuming corrections to scaling of the form �i�.
Even though this result is actually biased by that particular
choice �a point which has not been discussed in Ref. �17��,
the very good agreement between the different approaches
provides a highly welcome independent test of both methods.

Our MC results for ��x� compare well also with the ex-
perimental data of Ref. �5�. �For a meaningful comparison
between the numerical and the experimental scaling func-
tion, the abscissa �L1/
 of the experimental data presented in

Ref. �5� has to be properly normalized as � �L /	0
+�exp�

�1/
 by

using the experimental value 	0
+�exp�

=1.432 Å �44,45�.� In
particular, the position of the pronounced minimum of the
scaling function is properly captured. The corrections to
scaling of form �i� yield xmin

�i� =−5.43�2� and �min
�i� ���xmin

�i� �
=−1.396�6�, whereas those of form �ii� result in xmin

�ii�

=−5.43�2� and �min
�ii� ���xmin

�ii� �=−1.260�5�. The correspond-
ing experimental values are xmin

�exp�=−5.7�5� and �min
�exp�

=−1.30�3�. Taking into account the aforementioned bias af-
fecting the results of Ref. �17� and the sensitivity of the
resulting scaling function to the assumed form of the correc-
tions to scaling we conclude that our estimates for xmin and
�min are compatible also with those presented there �−5.3�1�
and −1.35�3�, respectively�. As expected, due to the presence
of the Goldstone modes below Tc, both the experimental and
the MC data do not approach zero for x→−� but saturate at
some finite negative value at low temperatures. However, the
absolute value of the saturation as obtained from the MC
simulations is smaller than the experimental one. This differ-
ence, which extends deep into the noncritical regime, is, in-
ter alia, due to 4He specific properties and to the occurrence
of capillary waves on the liquid-vapor interface of the critical
4He wetting films. This point has been discussed in Ref.
�29�. In Fig. 4 the gray vertical bar indicates the universal

value xO,O
�

=−7.64�15� of the scaling variable corresponding
to the occurrence of the Kosterlitz-Thouless transition at T
=Tc�L� in the film, as inferred from MC simulations of lattice
models in the XY universality class presented in Ref. �41�.
The Kosterlitz-Thouless transition is accompanied by an ac-
tually invisible essential singularity �exp�−const /��x−x���
in the behavior of the specific heat which, as discussed
above, displays a pronounced maximum at a temperature T
=Tm�L�. Accordingly, one does not expect to find any par-
ticular signature of this transition in the scaling function of
the Casimir force for x�x�, in distinction to the case of the
Ising model �cf., Secs. IV B 2 and IV B 3�.

Finally, for completeness, in Fig. 4 we have also included
�dash-dotted line� our mean-field result for the Casimir scal-
ing function �OO

�MFT� obtained from the limiting case of the
vectoralized Blume-Emery-Griffiths lattice model corre-
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FIG. 4. �Color online� Scaling function �OO of the Casimir
force for the three-dimensional XY model with �O ,O� BC. The MC
data reported in this figure refer to lattices with L=10, 15, and 20,
with fixed inverse aspect ratio 1 /�=6. Corrections to scaling have
been accounted for according to two different ansätze, provided by
Eqs. �20� and �21�; the corresponding numerical results are denoted
by �i� and �ii�, respectively. With corrections to scaling of the form
�ii�, the shape of the resulting scaling function is almost indistin-
guishable from the one obtained with corrections to scaling of the
form �i�, but its overall amplitude is reduced by a factor R�0.9. For
�i� our MC data compare very well with the corresponding experi-
mental data from Ref. �5� �solid line� and with the MC data of Ref.
�17� �dashed�. Due to the Goldstone modes �OO�x→−��=const
�0. The dash-dotted line shows the mean-field scaling function
�30,31� normalized to the depth of the minimum of the MC data �i�.
The levelling off of the experimental data �5� for x→−� contains a
component which is specific for 4He wetting films �29� and cannot
be captured by an XY lattice model. The gray bar indicates the

position and uncertainty of the universal value xO,O
�

=−7.64�15� of
the scaling variable x corresponding to the occurrence of the
Kosterlitz-Thouless transition in the film, as inferred from MC
simulations of lattice models in the XY universality class presented
in Ref. �41�.

UNIVERSAL SCALING FUNCTIONS OF CRITICAL… PHYSICAL REVIEW E 79, 041142 �2009�

041142-9



sponding to the model of pure 4He �30�. The scaling function
is normalized to the depth of the minimum of the MC data.
For large L, �OO

�MFT� agrees very well with the ones obtained
from the O�2� Landau-Ginzburg continuum theory �30,31�.

2. Periodic boundary conditions

In this subsection we discuss the XY model with periodic
BC. According to Fig. 2�b� corrections to scaling are much
less pronounced in this case than for �O ,O� BC �Fig. 2�a��,
suggesting that the exponent �eff might be actually larger
than 1. In addition, the dependence of the numerical data on
the aspect ratio � turns out to be relevant only in the re-
stricted range −1�y�0 of the scaling variable �see Fig. 3�,
so that the assumed forms of the aspect ratio corrections in
Eqs. �18� and �19� do not work best. In the present case, the
accuracy of our Monte Carlo data allows us to study in some
detail also the Casimir amplitude ���0� /2. Upon focusing
on such a quantity in a broader range of thicknesses �6�L
�20� it turns out that for this amplitude the corrections to
scaling are not properly accounted for by the previous an-
sätze �case �i� and case �ii�, Eqs. �20� and �21�, respectively�.
We have therefore tried also a fit of the exponent �eff accord-
ing to Eq. �19� with r1,2=0 �case �iii�, Eq. �22��, which yields
for the Casimir amplitude

�L� = �1 + g3L−�eff� . �24�

With this ansatz, our data for P�L� are very well fitted for
�eff=2.59�4� and g3=14.9�7� in the interval 0�L−1�0.15.
�At present, the origin of this rather large value of �eff is not
clear.� The comparison between the numerical data and the
fit is reported in Fig. 5. The value of the Casimir amplitude
extrapolated to the scaling limit L→� is P����P=
−0.2993�7� which is slightly smaller than the previous esti-
mate P=−0.28 �see Ref. �16� and the discussion below�.

Note, however, that our estimate is biased by the particular
form Eq. �24� assumed for the corrections to scaling.

The analysis of the Casimir amplitude P�L� suggests that
the corrections to scaling for periodic BC are well captured
�in the range of sizes and of the scaling variable investigated
here� by Eq. �22� �case �iii�� and Eq. �18� with r1=0. The
resulting estimate for the scaling function �P is reported in
Fig. 6 for which we adopt the values for g3 and �eff which
we determined from the analysis of the correction to scaling
for P�L�. It turns out that a very good data collapse is
achieved even without correcting the abscissa, i.e., with g�

�0, r1�0, within the range of the scaling variable x we
have investigated, which actually includes the interval −1
�y�0 in which the corresponding function g shows a more
pronounced dependence on �.

As another valuable test of the method, our results are
compared with the corresponding MC simulation data ob-
tained previously in Ref. �16� within a different approach,
i.e., by computing the average value of the lattice stress ten-
sor. In Fig. 6 we report the data set corresponding to the
lattice size L=20 investigated therein. The shapes of the two
scaling functions are very similar but the data points from
Ref. �16� are shifted upward with respect to the ones we have
obtained. This discrepancy might be due to the uncertainty in
the normalization factor used in Ref. �16�, where the vertical
scale of the data for �P has to be adjusted on the basis of an
independent estimate. This estimate has been obtained from
the �=4−d expansion of the ratio P,n /P,1 of the Casimir
amplitudes for O�n� models with the result P,n=2=−0.28 so

-0.44
-0.42

-0.4
-0.38
-0.36
-0.34
-0.32

-0.3
-0.28
-0.26

0 0.05 0.1 0.15 0.2 0.25

1/L

∆
P
(L

)

XY
periodic BC

MC data
(iii)

∆P (∞)

Ref.[16]

FIG. 5. �Color online� Critical Casimir amplitude P�L� for the
three-dimensional XY bulk universality class and periodic BC, esti-
mated from lattices of several thicknesses L and inverse aspect ratio
1 /�=6. Due to corrections to scaling, P depends on L. The solid
line represents the best fit to the numerical database on Eq. �24� and
allows one to extrapolate the value of P�L� to the scaling limit
L→�, resulting in P=−0.2993�7� ���. With � we indicate the
numerical estimate P=−0.28 provided in Ref. �16�.
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FIG. 6. �Color online� Scaling function �P of the Casimir force
for the three-dimensional XY model with periodic BC. The correc-
tions to scaling are taken into account by Eq. �22� �case �iii�� and
Eq. �18� with r1=0. The shape of our MC data compares very well
with the corresponding MC data ��� of Ref. �16�. For a discussion
of the relative shift of the data sets see the main text. The solid line
corresponds to the analytical prediction in Ref. �21�. Due to the
Goldstone modes, in agreement with Eq. �25�, �P�x→−��=
−0.383�4�, see horizontal dashed line. Contrary to �O ,O� BC in Fig.
4, for periodic BC MFT yields �P

�MFT��x��0 for x�0. The gray
vertical line indicates the position of the universal value

xP
�

=−2.82�2� of the scaling variable x corresponding to the occur-
rence of the Kosterlitz-Thouless transition in the film, as inferred
from MC simulations �42�.
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that �P�0��2P,n=2=−0.56. In contrast, the method pre-
sented here provides absolute values of the amplitude and the
scaling function. In addition to the uncertainty concerning
the normalization factor, in Ref. �16� no corrections to scal-
ing have been applied in the determination of �P. The
present MC results provide the estimates xmin=−0.73�1� and
�P�xmin�=−0.633�1� characterizing the position of the mini-
mum of the scaling function.

For the scaling function of the XY model with periodic
BC some analytical predictions are also available; for a thor-
ough comparison of the scaling function obtained within
various approaches see Ref. �46�. Here we discuss only the
comparison with the recent results based on a suitable per-
turbation theory for the O�n� model in a film geometry with
periodic BC �20,21�, which improves previous analyses �6,7�
of this scaling function for T�Tc by taking into account a
higher-order contribution to the perturbation theory which
involves fractional powers of �. In the case n=2 �XY model�
and in agreement with our MC data this latter analytically
available scaling function decreases monotonically for x
→0 and thus allows for the formation of a minimum below
Tc �without being able to reach it� whereas the previously
available analytic scaling function exhibits a minimum above
Tc. The analytically estimated value for the critical Casimir
amplitude is P�−0.43 �i.e., �P�0��−0.86� which in abso-
lute value is larger than the MC result. In Fig. 6 this analyti-
cally predicted scaling function is reported, for comparison,
as a solid line.

As already mentioned above, one characteristic feature of
the scaling function of the critical Casimir force in the XY
model �and, more generally, in systems with continuous sym-
metry� is its saturation at a nonzero negative value ��x
→���0 at low temperatures, which occurs for all non-
symmetry-breaking BC. This is due to the fact that, even
well below the critical temperature, the fluctuations of the
order parameter exhibit long-ranged correlations due to the
Goldstone modes associated with the broken continuous
symmetry, which result in a nonvanishing long-ranged Ca-
simir force. For periodic BC the saturation value �P�−�� is
significantly more negative and is approached more rapidly
than in the case of �O ,O� BC. The line of arguments pre-
sented in Ref. �29� for the theoretical calculation �TH� of
�O,O

�TH��−��=−��3� / �8���−0.049 �disregarding additional
helium-specific surface fluctuations� can be extended to the
present case by considering periodic �instead of Neumann as
in Ref. �29�� BC for the fluctuations of the phase field of the
order parameter in the film. In three dimensions this yields

�P
�TH��− �� = 2P

�G� � − 0.38, �25�

where P
�G�=−��3� / �2���−0.19 is the Casimir amplitude

for a one-component �n=1� fluctuating Gaussian field in a
film with PBC �see, e.g., Eq. �9.2� in Ref. �7��, so that
�P

�TH��−�� /�O,O
�TH��−��=8. The numerical data corresponding

to the MC simulations presented in Fig. 6 yield �P�−��
=−0.383�4� �obtained by fitting the data points in the region
−14�x�−10, two of which are actually not shown in Fig.
6, with a constant�. This is in very good agreement with the
theoretical prediction �P

�TH��−�� in Eq. �25�. Note that the
MC data of Ref. �16� give �P�−���−0.33, a value which is

biased by the choice of the normalization of the scaling func-
tion, as mentioned before. We point out, however, that the
line of arguments in Ref. �29� assumes that, deep in the low-
temperature phase, the phase field obeys Neumann BC and
that the magnitude of the complex order parameter �super-
fluid density� is spatially constant across the film, i.e., that
the effects of the surfaces are effectively negligible. This
might not be the case in the presence of the Goldstone modes
which can cause the magnitude of the order parameter to
vary algebraically within the film.

Finally, in Fig. 6 we report as a gray vertical line the

universal value xP
�

=−2.82�2� of the scaling variable x corre-
sponding to the occurrence of the Kosterlitz-Thouless transi-
tion in the film, as inferred from the MC simulations of the
XY model in a film with PBC �42�. As in the case of �O ,O�
BC, there is no singularity possibly visible in �P�x� associ-
ated with this transition.

B. Ising model

In the case of the Ising model we have determined the
scaling function � for �+−�, �++�, Dirichlet-Dirichlet �O ,O�,
and periodic BC. The first two BC are relevant for interpret-
ing the results of the experiments in Refs. �8,11� which use
as a critical medium classical binary liquid mixtures near
their demixing point.

In our simulations we have used lattices with L=10, 13,
16, and 20 and with Lx=Ly =6L, i.e., �=1 /6. Each data point
has been averaged over at least 105 hybrid MC steps.

1. (++) and (+−) boundary conditions

We first discuss the cases of �++� and �+−� BC, for which
we find that in the critical regime the numerical data for the
function g�y ;L ,2L ,A� are practically independent of the as-
pect ratio �=L /�A �see Fig. 7�. The presented data corre-
spond to L=10 and to inverse aspect ratios �−1=6,10,14. In
the case of �+−� BC the aspect ratio becomes relevant for
y�−4, where the behavior of the system is dominated by the
presence of the strongly fluctuating interface which separates
the regions with predominantly positive and negative mag-
netization. The extent of these fluctuations is known to be
particularly sensitive to the spatial extension and to the ge-
ometry of the system in the directions parallel to the inter-
face �i.e., in the Lx and Ly directions�; therefore the aspect
ratio � plays an important role for these fluctuations. In d
=3 one expects a strongly increasing parallel correlation
length 	� which governs the decay of the correlations in the
direction parallel to the interface, i.e., 	� �exp�L� / �4	�� with
L� =Lx=Ly �47�. In addition, these strong interfacial fluctua-
tions cause the scaling function �+− to decay to zero for
x→−� much more slowly than the scaling function �++ �see,
cf., Figs. 9 and 10�.

Contrary to the aspect ratio, L-dependent corrections to
scaling are rather important for the Ising model with �++�
and �+−� BC. By using the phenomenological ansätze in Eqs.
�18� and �20� or Eq. �21� with r1,2=0 �which account for the
negligible dependence of the data on �� we have obtained a
good data collapse for the scaling functions calculated for
L=13, 16, and 20. However, these ansätze fail to describe the
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data for the critical Casimir amplitude  in the broader range
of thicknesses 6�L�20, as it is the case of the XY model
with periodic BC.

It turns out that the corrections to scaling in this range are
very well captured by the functional dependence �iv� �Eq.
�23� introduced in Sec. III D, with r1,2=0� which for the
critical Casimir amplitude yields

�L� = 
�1 + g̃1L−1�
�1 + g̃2L−1�

. �26�

As in the case of the XY model with periodic BC we shall
determine the parameters g̃1 and g̃2 �according to Sec. III D�
for both �++� and �+−� BC on the basis of the analysis of the
corrections to scaling to the corresponding Casimir ampli-
tude and then these values are employed in order to calculate
the scaling functions �++ and �+−.

In Fig. 8 we present numerical data for  as a function of
1 /L for both �++� �a� and �+−� �b� BC with the correspond-
ing fit carried out according to Eq. �26� in the interval 0

�1 /L�0.1. Other variants of the fit function �within the
same fit interval�, such as �1+g1L−1�−1 and �1+g2L−1�,
indicated as �i� and �ii�, respectively, are also presented for
comparison.

For �++� BC the fitting parameters are g̃1=−2.6�1.2�,
g̃2=6.6�3.7� and the resulting estimate for the Casimir
amplitude is ++�L→���++=−0.376�29�, i.e., �++�0�
=−0.75�6�, which compares quite well with the previous MC
result �++�0�=−0.690�32� �24� shown as a full circle in
Fig. 8�a�; for the latter result corrections to scaling were not
taken into account. Field-theoretical predictions �++

�FT��0�
=−0.652. . .−0.346 give numbers slightly smaller in absolute
value which depend on the approximant used to resum the
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FIG. 7. �Color online� Plot of g(y ;L ,2L ,A= �L /��2) �see Eq.
�12�� for the three-dimensional Ising model with L=10 and
1 /�=6, 10, and 14. �a� and �b� refer to �++� and �+−� BC, respec-
tively, and the coincidence of data points corresponding to different
values of � demonstrates that the geometry of the lattice does not
affect the resulting finite-size critical behavior in the region −4
�y�10.
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FIG. 8. �Color online� MC data for the critical Casimir ampli-
tude �L� of the three-dimensional Ising model with �a� �++� and
�b� �+−� BC, as a function of the inverse lattice size L �for lattices
with fixed inverse aspect ratio 1 /�=6�. L-dependent corrections to
scaling give rise to the dependence �L� such that
++/+−�++/+−�L→��. The solid line corresponds to the best fit
obtained by using the fitting ansatz in Eq. �26� in the interval 0
�1 /L�0.1. For comparison we present also the best fits using the
ansätze �i� �L�=�1+g1L−1�−1 and �ii� �L�=�1+g2L−1�. Our
estimates ��� for the asymptotic values of the Casimir amplitudes
compare reasonably well with previous MC results ��� from Ref.
�24� and with results ��� obtained from the de Gennes–Fisher
local-functional �18�.
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field-theoretical �=4−d expansion up to O��� series �see
Ref. �24� for details�.

For �+−� BC we have found g̃1=−1.8�1�, g̃2=8.54�43�
and we estimate +−�L→���+−=2.71�2�, i.e., �+−�0�
=5.42�4�, in agreement with the experimental value
�+−

�exp��0�=6�2� �8� but slightly larger compared to the previ-
ous MC estimate �+−�0�=4.900�64� �24� �indicated as a full
circle in Fig. 8�b�, still affected by finite-size corrections�
and the analytical estimates �+−

�FT��0�=3.16. . .4.78. The latter
depend on the approximant used to resum the O��� series
�see Ref. �24� for details�.

By using the values of g̃1 and g̃2 obtained previously in
the context of the Casimir amplitude we determine the coef-
ficient g� of the correction to the scaling variable x �see Eq.
�18� with r1=0� in order to achieve a good data collapse for
the whole scaling function, with the results g�=2.04�15� for
�++� BC and g�=2.90�15� for �+−� BC. The comparison
between three phenomenological ansätze for the corrections
to scaling, i.e., cases �i� �Eq. �20��, �ii� �Eq. �21��, and �iv�
�Eq. �23��, are presented in Figs. 9 and 10 for �++� and
�+−� BC, respectively. The scaling functions corresponding
to the rational expression for the corrections to scaling ansatz
�case �iv�� lie in between the two others.

Currently, for the film geometry with �++� BC there are
no experimental data available for comparison, but in Fig. 9

�++ can be compared with the prediction of mean-field
theory �24� �MFT, solid line, normalized such that
�++

�MFT��0�=�++
�MC��0� �=2++

�MC� see Fig. 8�a��� and with the
prediction of the two-dimensional Ising model �23� �dashed
line�. Recently, the de Gennes–Fisher local-functional
method has been extended to study the three-dimensional
case with �++� BC �18,19�. In this latter �nonperturbative�
approach one takes advantage of the knowledge of the values
of bulk critical exponents and amplitude ratios in order to fix
completely certain parameters of an effective model which is
then used to calculate the structural properties and the free
energy of the system first in the presence of a single wall and
eventually in thin films, giving access to the scaling function
for �++� BC. The resulting scaling function �dash-dotted line
in Fig. 9� is in very good agreement with the one �bottom set
of data points in Fig. 9� determined numerically via MC
simulations by assuming corrections to scaling of the form
given by Eqs. �20� and �18� with r1,2=0 and suitable values
for the fitting parameters g� and g1 �see above�. This agree-
ment suggests that corrections to scaling are properly cap-
tured by such ansätze even for L→�. The prediction of the
de Gennes–Fisher local-functional method for the critical
Casimir amplitudes �shown as diamonds in Figs. 8�a� and
8�b�� is ++=−0.42�8� and +−=3.1 �18�, which compares
quite well with our MC results for ++=−0.376�29�, whereas
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FIG. 9. �Color online� Scaling function �++ of the critical Ca-
simir force in the three-dimensional Ising model with �++� BC and
zero bulk field. Data points refer to lattices with fixed inverse aspect
ratio 1 /�=6. The bottom and top data sets have been obtained by
accounting for corrections to scaling according to Eq. �20� �case �i��
and Eq. �21� �case �ii��, respectively. The intermediate data set,
instead, considers corrections of the rational form given by Eq. �23�
�case �iv��. In each case the data collapse turns out to be very good
within the range of the scaling variable x covered in the figure. The
final estimate of the scaling function is biased by the functional
form assumed for the corrections to scaling. The position xmin

�5.90�8� of the minimum is insensitive with respect to these
choices for the form of the corrections. For comparison we provide
the prediction of mean-field theory �24� �solid line�, normalized
such that �++

�MFT��0�=�++
�MC��0� �Fig. 8�a��, the exact result for the

two-dimensional Ising model �23� �dashed line�, and the result from
the extended de Gennes–Fisher local-functional method �19� �dash-
dotted line�. Note that the actual phase transition of the film occurs
at a nonzero value of the bulk field.
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FIG. 10. �Color online� Scaling function �+− of the critical Ca-
simir force in the three-dimensional Ising model with �+−� BC and
zero bulk field. Data points refer to lattices with fixed inverse aspect
ratio 1 /�=6. For comparison we provide the mean-field prediction
�24� �solid line�, normalized such that �+−

�MFT��0�=�+−
�MC��0� �=2+−,

Fig. 8�b��, the exact result for the two-dimensional Ising model �23�
�dashed line�, and the set of experimental data points from Ref. �8�.
The top and bottom data sets have been obtained by accounting for
corrections to scaling according to Eq. �20� �case �i�� and Eq. �21�
�case �ii��, respectively. The intermediate data set, instead, considers
corrections of the rational form given by Eq. �23� �case �iv��. In
each case the data collapse turns out to be very good for x�−20.
The final estimate of the scaling function is biased by the functional
form assumed for the corrections to scaling. The position xmax�
−5.4�1� of the maximum is insensitive with respect to these choices
for the form of the corrections. In spite of this caveat the compari-
son with the experimental data is encouraging. Note that the actual
phase transition of the film occurs at a nonzero value of the bulk
field.
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for +− the agreement with our result +−=2.71�2� is slightly
less good.

In the case of �+−� BC we can compare �+− with the
experimental results of Ref. �8�, with the prediction of mean-
field theory �24� and with the corresponding result for the
two-dimensional Ising model �23� �see Fig. 10�. The solid
line, normalized similarly as for �++� BC, represents the MF
result, whereas the dashed line refers to the two-dimensional
Ising model �23�. We expect the experimental data in Ref. �8�
to be affected by corrections to scaling already for x�2, due
to the relatively small corresponding value of 	 /��30,
where ��3Å is the molecular scale set by the specific binary
liquid mixture used in Ref. �8�. In view of these difficulties,
the comparison between the MC and the experimental data in
Fig. 10 can be regarded to provide an encouraging agree-
ment.

Within the Derjaguin approximation our numerical results
for �++ and �+− form the basis for the calculation �11� of the
corresponding scaling functions for the critical Casimir po-
tentials in the sphere-plate geometry, which turn out to be in
remarkably good agreement with the actual experimental re-
sults for that geometrical setting �48�.

Comparing the scaling functions for d=2, 3, and 4 �MFT�
one finds that in the case of �++� ��+−�� BC the position of
the minimum �maximum� moves away from the bulk critical
point x=0 as the spatial dimension increases. For �++�
��+−�� BC the minimum �maximum� occurs above �below�
Tc for all d. The shapes of the scaling functions in d=2 and
d=3 exhibit an interesting resemblance.

As we pointed out above, in the case of �+−� BC the
fluctuations of the order parameter are enhanced by the pres-
ence of a strongly fluctuating interface in the middle of the
film. This results in a critical Casimir force which is gener-
ally stronger than in the case of �++� BC, for which there is
no such an interface. This is reflected by the fact that the
amplitude �+− is larger than that of ��++�, e.g.,
�+−

�max� / ��++
�min���3.8 for the data sets obtained by accounting

for the corrections to scaling according to Eq. �20� �case �i��
and Eq. �21� �case �ii��. Even though field-theoretical MFT
per se does not provide quantitative predictions for the over-
all amplitudes of the scaling functions �++,+−, it yields the
relation �49�

�+−
�MFT��x� = − 4�++

�MFT��− 2x� �27�

and therefore predicts �+−
�max� / ��++

�min��=4 and that the maxi-
mum of �+− �minimum of �++� occurs below �above� Tc.
Thus MFT captures already quite well the qualitative and
quantitative differences due to the presence or absence of an
interface in the film. In addition, the fluctuations of such an
interface, occurring in particular at low temperatures, cause
the scaling function �+− to decay to zero for x→−� more
slowly than the scaling function �++, which is clearly visible
by comparing Figs. 9 and 10.

2. Dirichlet-Dirichlet boundary conditions

In Fig. 11 we show the MC data corresponding to
g�y ;L ,2L ,A� �see Eq. �12�� for the Ising model with �O ,O�
BC, realized by free surface spins. The L dependence of
these data is quite pronounced and resembles that for the XY

model with the same BC �compare Fig. 2�a��. On the other
hand, the aspect ratio dependence appears to be relevant only
in the narrow interval −2�y�−1 �see Fig. 12�, which is
similar to the case of the XY model with periodic BC �com-
pare Fig. 3�. As anticipated in Sec. IV A, the Ising model in
a 3D film with Dirichlet-Dirichlet or periodic BC displays its
2D critical behavior at a critical point which is located on the
bulk coexistence line H=0 at a size-dependent temperature
Tc�L� such that Tc�L→��=Tc�1+ycL

−1/
� �2�, where yc is a
nonuniversal constant which depends, inter alia, on the BC.
From extrapolating the MC data for Tc�L� reported in Table
II of Ref. �50� to L→� one infers yc,OO=−2.5�5� for the
Ising model with �O ,O� BC. As in the case of the XY model,
the residual dependence on � observed in Fig. 12 might be
due to the influence of the 2D phase transition for y�yc,OO.
Such a dependence cannot be captured by ansätze such as the
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FIG. 11. �Color online� Monte Carlo data for gOO�y=��L
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2 �1/
 ; L ,2L ,A= �L /��2� �see Eq. �12�, �= �T−Tc� /Tc� in the
three-dimensional Ising model with �O ,O� BC for L=8,12,16,20,
and for a fixed aspect ratio �=1 /6. The 2D critical point of the film
is located at y=yc,OO=−2.5�5�, as inferred from extrapolating the
data in Table II of Ref. �50� to L→�.
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 ; L ,2L ,A= �L /��2) �see Eq. �12�, �= �T−Tc� /Tc� in the
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ones considered so far, which assume that the corrections to
scaling due to ��0 are independent of x. Therefore, in order
to achieve a good collapse of the data sets corresponding to
different lattice sizes we account for corrections to scaling by
following the procedure applied to the XY model with �O ,O�
BC, but we do not consider an aspect ratio dependence, i.e.,
we use the ansätze in Eqs. �18� and �20� �case �i��, and Eq.
�21� �case �ii�� with r1,2=0. As a result of the fitting proce-
dure in the interval x� �−7,−4� we find g1=6.55�8� and g�

=2.35�3� in case �i�, and g2=−2.877�15� and g�=2.35�3� in
case �ii�. Figure 13 shows the corresponding resulting esti-
mates of the scaling function ��x� of the critical Casimir
force with an excellent data collapse. As before, we find that
��x� is affected by the choice of the functional form of cor-
rections to scaling. In the two cases �i� and �ii� one finds
estimates of ��x� which have the same shape but the overall
amplitude is reduced by a factor R�0.866 in case �ii� com-
pared with case �i�.

Due to the residual dependence on the aspect ratio �,
xmin��� and �min��� decrease upon decreasing � and therefore
the values of �min and xmin quoted above overestimate the
actual �min��=0� and �min��=0�. The accuracy of our data
does not allow us to study in more detail the Casimir ampli-
tude O,O���0� /2 �as we did for ++ and +− in Fig. 8�,
which turns out to be very small for �O ,O� BC. Indeed

the estimate from the partially resummed � expansion is
O,O=−0.0164 �24�, whereas MC simulations yield
O,O=−0.0114�20� �24�. However, from our data
for the scaling function we can estimate O,O=−0.014�8�.
The corrections of form �i� yield for the pronounced mini-
mum of the scaling function xmin

�i� =−5.74�2� and �min
�i�

���xmin
�i� �=−1.629�3� whereas those of form �ii� result in

xmin
�ii� =−5.73�4� and �min

�ii� ���xmin
�ii� �=−1.41�1�.

In 2D the scaling functions obey the relation �OO�x�
=�++�−x� �23�. We note that in 3D this relation holds ap-
proximately for the positions of the minima of the scaling
functions �xmin

�O,O��−5.7,xmin
�+,+��5.90� but for the �O ,O� BC

the scaling function vanishes more rapidly than the scaling
function for the �++� BC. For comparison in Fig. 13 we
provide the exact result for the two-dimensional Ising model
�dashed line�. In the inset we show our MC data correspond-
ing to the case �i� together with the scaling function obtained
by using the � expansion in Ref. �7�. We note that it yields
��0� /2=O,O�−0.0118, which is larger than the estimate
O,O�−0.015 given in the same paper �7�, and obtained
from dimensional interpolation; the latter value is still larger
than the more recent theoretical estimate O,O�−0.0164 in
Ref. �24�.

In the case of Dirichlet-Dirichlet boundary conditions dis-
cussed here, the film exhibits the 2D critical behavior at T

=Tc�L�, corresponding to a universal value x�=yc�	0
+
�−1/
 of

the scaling variable x. Close to the temperature Tc�L�, the
free energy of the film is expected to exhibit the singularity
��T−Tc�L��2−�2D, where �2D is the critical exponent of the
specific heat of the two-dimensional system. This implies �7�
that the scaling function �OO�x� of the Casimir force displays
a singularity ��x−x��2−�2D at x=x�, i.e., ��x−x��2ln�x−x��
for the Ising model. This singularity is too weak to be de-
tectable by the present MC data. In Fig. 13 the gray bar

indicates the value of xOO
�

=yc,OO�	0
+
�−1/
=−7.6�1.3� and the

associated uncertainty. Accordingly, the singularity is ex-
pected to occur on the left side of the pronounced dip.

So far there are no experimental data available that would
correspond to the Ising universality class with �O ,O� BC.
For experiments with binary liquid mixtures the �O ,O� BC
would correspond to walls which have no adsorption prefer-
ences, i.e., both components of the mixture are attracted
equally by each surface. Effectively, in the limit of large film
thicknesses, this can be achieved by chemically decorating
the confining walls by stripes of equal width and alternating
preferences for the two species of the binary liquid mixture
�see Fig. 6 in Ref. �51� for S=1, for which within MFT the
effective Casimir amplitude vanishes, corresponding to van-
ishing surface fields within MFT so that �O ,O� BC hold�.

3. Periodic boundary conditions

In the case of periodic BC the aspect ratio dependence of
the Monte Carlo data for the Ising model �as for the XY
model discussed in Sec. IV A� turns out to be relevant only
in the vicinity of the minimum of the function gP�y ;L ,2L ,A�
which is associated with the finite-size effects close to the
actual critical point of the thin film. Extrapolating the data in
Table I of Ref. �50� to L→� one infers that the shifted
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FIG. 13. �Color online� Scaling function �OO of the Casimir
force for the three-dimensional Ising model with �O ,O� BC and
zero bulk field. The MC data refer to lattices with L=8,12,16,20
and with a fixed inverse aspect ratio 1 /�=6. Corrections to scaling
have been accounted for according to two different ansätze, pro-
vided by Eqs. �20� and �21�, and the corresponding numerical re-
sults are denoted by �i� and �ii�, respectively. With corrections of the
form �ii�, the shape of the resulting scaling function is almost in-
distinguishable from the one obtained with corrections of the form
�i�, but its overall amplitude is reduced by a factor R�0.866. For
comparison we show the exact result for the 2D Ising model �23�
�dashed line� and the mean-field prediction �30� �dash-dotted line�
normalized such that it yields the same depth of the minimum as the
one of the MC data �i�. In the inset we compare the MC data
corresponding to the case �i� with the scaling function obtained
from the � expansion �7�. The gray bar indicates the value

xOO
�

=−7.6�1.3� �and its uncertainty� of the scaling variable x corre-
sponding to the occurrence of the shifted critical point, inferred
from extrapolating the data in Table II of Ref. �50� to L→�.
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critical point corresponds to y=yc,P=−1.60�2�. The fact that
this type of finite-size dependence does not occur for the
Ising model with fixed BC �see Fig. 7� might be related to
the different phase behavior below Tc in the latter case. For
�++� BC the critical point is shifted off the bulk coexistence
line H=0 to some value (Tc�L� ,Hc�L�) �52� and hence in the
vicinity of the minimum of the function g++�y ;L ,2L ,A� the
corresponding bulk correlation length is smaller than the
characteristic transverse length L� =�A. As already men-
tioned earlier, for �+−� BC below Tc �but above the tempera-
ture of unbinding of this interface from one or the other
surface� there exists a single film phase characterized by the
OP profile displaying an interfacelike structure centered at
the middle of the film �47,53�. In this film phase the parallel
correlation function 	� governing the exponential decay of
correlations along the interface is very large even for tem-
peratures further away from Tc, i.e., 	� �exp�L� / �4	�� with
L� =Lx=Ly. 	� gives rise to the aspect ratio dependence of the
function gP�y ;L ,2L ,A� for y�−4.

In order to account for the corrections to scaling we fol-
low the same procedure which we used for the XY model
with periodic BC, i.e., we assume their L dependence to be
captured by Eq. �22� at least within the range of sizes we are
interested in. Accordingly, we focus on the data for the criti-
cal Casimir amplitude P and we fit them according to Eq.
�24� �case �iii�, Eq. �22��. The best fit parameters, based on
all data points, are given by g3=16.10�55� and �eff
=2.664�27� and the resulting curve is provided as a solid line
in Fig. 14. The associated estimate for the asymptotic value
P�L→���P=−0.1520�2� agrees very well with the MC
result −0.1526�10� from Refs. �24,54�.

The scaling function �P can now be determined by as-
suming that Eq. �19�, with r2=0 and the parameters g3 and

�eff obtained from the analysis of P�L�, effectively de-
scribes its corrections to scaling �case �iii�, Eq. �22��, which
actually leads to a very good data collapse in a wide range of
temperatures. It also turns out that no corrections to the scal-
ing variable x �see Eq. �18�� are required in order to achieve
it, i.e., r1, g��0. �Note, however, that corrections due to �
�0 might be particularly relevant within a certain range of
the scaling variable x, see below.� The resulting scaling func-
tion �P is presented in Fig. 15 and it is based on a larger set
of sizes of the simulation cell and with a better accuracy than
in our earlier work �12�. The scaling function is in very good
agreement with its previous determination in Ref. �16� based
on the computation of the lattice stress tensor. The slight
discrepancies might be due to the uncertainty in the normal-
ization factor which had to be used in Ref. �16� �see also Sec.
IV A�. This agreement provides additional support concern-
ing the reliability of our approach.

Figure 15 presents also the comparison with the analytical
prediction of the recently proposed FT expansion up to
O��3/2� �21� �dash-dotted line� for x�0. This latter predic-
tion is now in better agreement with the MC data than the
previous O��� field-theoretical result in Ref. �7� but still
misses the onset of the formation of the minimum. �Figure 5
in Ref. �12� compares the MC data with the O��� results,
revealing a significant discrepancy for 0�x�4.� The esti-
mated value of �P

�FT��0�=−0.39 from Refs. �20,21� does not
agree with our MC estimate �P�0�=−0.3040�4�. For the
minimum of the scaling function we find the estimates xmin
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FIG. 15. �Color online� Scaling function �P�x� of the critical
Casimir force in the three-dimensional Ising model with periodic
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text. For comparison we show also the data set corresponding to the
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for 2D Ising model �dashed line� that we have obtained numerically
by using the transfer matrix method. Due to the self-duality of the
2D Ising model one has �P�−x�=�P�x� for d=2 which allows for
the occurrence of two symmetric minima �22�. We note that MFT
yields �P�x��0 �solid line�. The gray vertical line indicates the

universal value xP
�

=−1.60�2� of the scaling variable x correspond-
ing to the occurrence of the shifted critical point, inferred from
extrapolating the data in Table I of Ref. �50� to L→�.
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=−0.681�1�, �min��P�xmin�=−0.329�1�. Note, however,
that for x�xmin the corrections due to ��0 are expected to
be relevant. In order to substantiate this statement we have
determined the function gP(y ;L ,2L ,A= �L /��2) �see Eq.
�12�� also from a set of data for lattices of thickness L=10
and 15 with an inverse aspect ratio �−1=14, which can be
compared with the corresponding data set from Fig. 15, for
which �−1=6. This comparison is presented in Fig. 16 and
clearly shows that, while the function gP is actually only
slightly dependent on the thickness L of the lattice, there is a
dependence on � which, however, is relevant only very close
to xmin. As mentioned above for the case of �O ,O� BC, this
latter dependence on � cannot be captured by ansätze such as
the ones considered so far because they assume
x-independent corrections due to ��0. Therefore, similar to
the case of �O ,O� BC, due to the residual dependence on �,
xmin��� and �min��� decrease upon decreasing � and therefore
the values of �min and xmin quoted above overestimate the
actual values of �min��=0� and xmin.

As in the case of Dirichlet-Dirichlet boundary conditions,
the point at which the film exhibits the 2D critical behavior is
located on the bulk coexistence line and corresponds to a
value x� of the scaling variable x, at which the scaling
function is expected to display the weak singularity
��x−x��2ln�x−x�� �see Sec. IV B 2 above�. In Fig. 15 the
gray vertical line indicates the corresponding universal value

xP
�

=yc,P�	0
+
�−1/
=−1.60�2�. Accordingly, also in this case the

singularity is expected to occur on the left side of the pro-
nounced dip but cannot be detected by the present MC data.

As a final remark we point out that for the Ising model
with periodic BC the function gP�y ;L ,2L ,A� exhibits a
somewhat peculiar shape near Tc with a characteristic
“shoulder” formed above the critical temperature. The pro-

cedure for retrieving the scaling function �̂�y� �the lattice

estimate of ��y���P�y / �	0
+
�1/
�� via Eq. �13� involves res-

caling of the argument of the scaling function and removes
the “shoulder” structure from the curve. The formation of
this “shoulder” is related to the particular shape of �P which
on the left side of the minimum increases more steeply than
on the right side of it �see Fig. 17�.

V. SUMMARY AND CONCLUSIONS

A. Summary

We have presented important details of a general ap-
proach �12� to determine the universal scaling functions � of
critical Casimir forces via MC simulations. We have applied
this method �see Secs. III A and III B as well as Fig. 1� in
order to study the scaling functions corresponding to the
three-dimensional Ising and XY bulk universality classes for
a variety of universal boundary conditions in film geometries
with varying thickness L. Corrections to scaling appear to be
quite relevant in the range of sizes L we have investigated,
which are strongly limited by the steeply increasing compu-
tational costs required for larger systems. In spite of these
difficulties, it is possible to analyze the corresponding MC
data by assuming suitable ansätze for corrections to scaling.
Even if the final numerical determinations of the scaling
functions are biased by these assumptions, they turn out to be
consistent with the results of different numerical and analyti-
cal approaches and with all available experimental data.

Our main results are the following:
�1� We have obtained the Casimir scaling function �OO

for the three-dimensional XY model with �O ,O� BC
��Dirichlet, Dirichlet� BC� �Fig. 4�. Corrections to scaling
have been accounted for by using two different ansätze, pro-
vided by Eq. �20� �case �i�� and Eq. �21� �case �ii��. These
choices of the functional form of corrections to scaling have
been dictated by the pronounced dependences on L and on
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2 �1/
 ; L ,2L ,A= �L /��2) �see Eq. �12�� for the three-
dimensional Ising model with periodic BC. For a fixed value of �,
this function depends only weakly on L. By changing �, the func-
tion gP is affected mainly in the region −0.6�y�0. The 2D critical
point of the film is located at y=yc,P=−0.52�2�, as inferred from
extrapolating the data in Table I of Ref. �50� to L→�.
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the aspect ratio � of the simulation cell which occur for this
type of BC �Fig. 2�a��. Both ansätze lead to a very good data
collapse but the overall amplitude of the scaling function is
reduced by a factor R�0.9 in case �ii� compared to case �i�.
Our MC data compare very well with the corresponding ex-
perimental data for 4He films from Ref. �5� and with the MC
data of Ref. �17�. For comparison also mean-field results are
provided.

�2� The Casimir scaling function �P and the critical Ca-
simir amplitude P have been obtained for the three-
dimensional XY model with periodic BC �Figs. 6 and 5�. In
this case, judged by the behavior of the generating function g
introduced in Eq. �12�, corrections to scaling are much less
pronounced than in the case of �O ,O� BC �Fig. 2�b�� and the
aspect ratio dependence is relevant only in the restricted
range of the scaling variable near the minimum of the scaling
function �Fig. 3�. A very good data collapse is achieved by
using the ansatz with the effective exponent �eff=2.59�4�
�Eq. �22� �case �iii�� and by neglecting the corrections to
scaling due to the aspect ratio dependence �r1,2=0 in Eqs.
�18� and �19��. The shape of our MC data agrees very well
with the corresponding MC data of Ref. �16� which, how-
ever, have left the amplitude undetermined. Our estimate for
the critical Casimir amplitude is P=−0.2993�7�. By extend-
ing the line of arguments of Ref. �29� to the present case, we
have theoretically predicted the value �P

�TH��−��=−��3� /�
�−0.38 �see Eq. �25�� at which the scaling function �P�x�
saturates for x→−�. This value is confirmed by the corre-
sponding estimate −0.383�4� based on our MC data.

�3� We have obtained the scaling functions �++, �+− and
the corresponding Casimir amplitudes ++ ,+− of the critical
Casimir force in the three-dimensional Ising model with
�++� and �+−� BC, respectively, applicable for classical flu-
ids �Figs. 9, 10, and 8�. We find that in the critical regime the
numerical data are practically independent of the aspect ratio
� �Fig. 7� but L-dependent corrections to scaling are rather
important �Fig. 8�. The presented scaling functions and Ca-
simir amplitudes have been obtained by accounting for cor-
rections to scaling according to Eq. �20� �case �i��, Eq. �21�
�case �ii��, and Eq. �23� �case �iv�� with r1,2=0 �thus neglect-
ing the dependence of the data on ��. The final estimate of
the scaling function is biased by the functional form assumed
for the corrections to scaling; all considered cases provide a
very good data collapse. The fitting ansatz in Eq. �26�
describes very well the data for the Casimir amplitudes
++/+− as a function of the film thickness L. Our estimates
for the asymptotic values of the Casimir amplitudes are
++=−0.376�29� and +−=2.71�2� which compare reason-
ably well with previous MC results from Ref. �24� and with
the results from the de Gennes–Fisher local-functional ap-
proach �18�. Our results for the case of �+−� BC compare
well with recent x-ray scattering data for critical films of a
classical binary liquid mixture �8�. Moreover the MC data
for the scaling functions �++ and �+− have been used to
calculate, within the Derjaguin approximation, the corre-
sponding scaling functions for the critical Casimir potentials
for the experimentally relevant geometry of a sphere near a
planar substrate. These numerical results agree remarkably
well with the experimental data for colloidal particles im-
mersed in a critical solvent and close to a container wall �11�.

�4� We have obtained the Casimir scaling function �OO
for the three-dimensional Ising model with �O ,O� BC �Fig.
13�. For these BC the L dependence of the MC simulation
data is quite pronounced �Fig. 11�, similarly to the case of the
XY model with the same �O ,O� BC. The dependence on the
aspect ratio is relevant only in the small range of the scaling
variable near the minimum of the scaling function �Fig. 12�.
Our data do not allow us to obtain a quantitatively accurate
estimate of the Casimir amplitude because of its very small
value. Corrections to scaling have been accounted for ac-
cording to the ansätze provided by Eq. �20� �case �i�� and Eq.
�21� �case �ii�� with r1,2=0 �thus neglecting the dependence
of the data on the aspect ratio ��.

�5� The scaling function �P�x� and the critical Casimir
amplitude P have been obtained for the three-dimensional
Ising model with periodic BC �Figs. 15 and 14�. As in the
case of the XY model with periodic BC, the aspect ratio
dependence of the MC data appears to be pronounced only
near the actual critical point of the thin film �Fig. 16�. There-
fore, the corrections to scaling have been accounted for in
the same way as for the XY model with periodic BC, i.e.,
according to Eqs. �19� and �22� �case �iii��. The best fit for
the L dependence of the Casimir amplitude P has been ob-
tained by using the ansatz given in Eq. �26�. Our improved
estimate for the value of the Casimir amplitude P
=−0.1520�2� agrees very well with the previous MC result
from Refs. �24,54�. The particular shape of the scaling func-
tion �P�x� around its minimum is reflected in the formation
of a characteristic “shoulder” in the corresponding generat-
ing function gP above the critical temperature �Fig. 17�.

B. Conclusions and outlook

Our approach can be applied in order to study other ex-
perimentally relevant geometrical settings as well as the ef-
fect of chemically or geometrically inhomogeneous confin-
ing surfaces on the critical Casimir force. In the latter cases,
even lateral critical Casimir forces are expected to act in
addition to the normal Casimir force investigated here. This
lateral force has been theoretically investigated for chemi-
cally �55� and topographically �56� patterned surfaces,
whereas it has been experimentally studied for colloidal par-
ticles exposed to chemically patterned surfaces �57�.

In addition to applying our quantitative method to these
cases, it is also desirable to perform more extensive and
larger scale MC simulations in order to identify the origins of
the corrections to scaling and to characterize them more ac-
curately, possibly to the extent which is by now achieved for
bulk critical phenomena. This valuable knowledge would
therefore allow an unbiased and thus even more accurate
determination of the scaling functions of the critical Casimir
force beyond the results presented here. Finally, beyond the
application to thin 4He films near the superfluid-normal fluid
transition, our results for the three-dimensional XY model
with �O ,O� BC could be relevant for critical Casimir forces
acting on Bose-Einstein condensates �58�.
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APPENDIX: CORRECTIONS TO SCALING AND FITTING
PROCEDURES

In this appendix we describe the general strategy we have
used in order to obtain the best fitted values of the param-
eters which control the corrections to scaling. The main
problems one faces are to quantify the quality of a certain
data collapse and then to choose the parameters which influ-
ence it in such a way as to optimize this quality. The estima-
tion of the parameters and of the associated confidence inter-
val proceeds as in the case of least-square fits with chi-square
tests of the quality of the fit, but with the additional compli-
cation that the fitting function itself is not known and has to
be estimated from the numerical data itself.

In what follows we describe the procedure we have used
in order to determine the best fit parameters which control
the L-dependent corrections to scaling. On the same footing
we have also treated the corrections due to a nonzero aspect
ratio ��0 �see Sec. III D�. In full generality, assume that one
seeks to determine, e.g., via MC simulations, the finite-size
scaling function h of a quantity � which, in the absence of
corrections to scaling, is expected to be a function of a scal-
ing variable x only �which involves a suitable combination of
temperature and size L of the system� so that

��x,L → �� = h�x� . �A1�

For the time being we omit possible algebraic L-dependent
prefactors of h. In the MC simulations one considers a set of
N lattices of sizes L1 ,L2 , . . . ,LN and by varying the tempera-
ture one collects for each size Lk a discrete set of numerical
values �k,j of � with j=1,2 . . . , jk

max which correspond to
values xk,j of the scaling variable x in the interval �xmin,xmax�.
In this process the statistical uncertainty �k,j associated
with �k,j is also determined. From these quantities �k,j one
intends to determine h, taking into account the presence of
corrections to scaling. Due to them, � is actually not a func-
tion of x only, but also of the size L of the system. In order to
cope with this one therefore assumes the following func-
tional structure:

��x;L� = f1�L;t1�h„f2�L;t2�x… , �A2�

where f1�L ; t1� and f2�L ; t2� capture the effects of the correc-
tion to scaling on the quantity � itself and on the scaling
variable x, respectively. These functions depend on the size L

of the system and on certain parameters t1 , t2 which one
would like to determine in such a way as to achieve the
best data collapse for the function h, obtained from the set
of data points 	f2�Lk ; t2�xk,j , (f1�Lk , t1�)−1�k,j
¬ (yk,j�t1 , t2� ,
hk,j�t1 , t2�) for the various values of j and k, and as to
take also into account the statistical error hk,j�t1�
ª �f1�Lk , t1��−1�k,j associated with hk,j�t1 , t2�.

For each value Lk we have interpolated the data set
�xk,j ,�k,j� in the interval �xmin,xmax� by using a cubic spline
approximation. This way we have constructed a function
�k�x� with x� �xmin,xmax� and with �k�xk,j�=�k,j. From this
function we have calculated the corresponding Lk-dependent
estimate hk�x ; t1 , t2� of h, given by

hk�y ;t1,t2� = f1�Lk;t1�−1�k„yf2�Lk;t2�−1
… , �A3�

which fulfills hk�yk,j�t1 , t2� ; t1 , t2�=hk,j�t1 , t2�. In order to as-
sess the quality of the data collapse and the quality of the fit
we have actually to specify the function with which we
would like to fit the data, which is the yet unknown scaling
function h. In order to achieve this, we define an expected
model function hexpect as the average of the various hk,

hexpect�y ;t1,t2� =
1

N
�
k=1

N

hk�y ;t1,t2� , �A4�

which will then be fitted to the observed MC values by ad-
justing the parameters t1 and t2.

Accordingly, we calculate the “�2�t1 , t2�” associated with
the fitting of the data points (yk,j�t1 , t2� ,hk,j�t1 , t2�) with the
function hexpect�y ; t1 , t2�:

�2�t1,t2� = �
k=1

N

�
j=1

jk
max

	hk,j�t1,t2� − hexpect„yk,j�t1,t2�;t1,t2…
2

�hk,j�t1��2 .

�A5�

Due to the nontrivial and nonlinear dependence of the fitted
data �and of the fitting function� on the parameters ti we
cannot assume this quantity to play the same role as a �2 in
more standard fitting procedures in which only the fitting
function depends on the parameters one wants to estimate.
Nevertheless, we have heuristically made this assumption,
i.e., that �2�t1 , t2� plays the same role as a �2, in order to
determine the best fit parameters and the associated confi-
dence intervals. Accordingly we have proceeded as usual by
determining the optimal fit parameters t̄1 and t̄2 which mini-
mize the value of �2 :�2�t̄1 , t̄2�=min	t1,t2
�

2�t1 , t2�. In order to
estimate the statistical uncertainty t̄i of t̄i we have deter-
mined that region of the plane �t1 , t2� for which �2�t1 , t2�
��2�t̄1 , t̄2�+2.3 �59�. The projection of the resulting region
�typically of the form of an ellipse� onto the axis ti gives
2t̄i, so that the estimate for the parameters is of the form
t̄i�t̄i.
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